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The space of ellipsoids may be metrized by the Hausdorff distance
or by the sum of the distance between their centers and a distance between
matrices. Various inequalities between metrics are established.

It implies that the square root of positive semidefinite symmetric
matrices satisfies a Lipschitz condition, with a constant which depends

only on the dimension of the space.
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1. Distance between ellipsoids as sets.

Ellipsoids in Rn may be viewed as elements of the set of subsets
of R", subsets which could be restricted to be compact, convex and
centrally symmetric. The set of subsets of R" is usually metrized

by the Hausdorff metric [2]:

§(F,F) = Max{sup Inflx -~ yl, sup Inflx - yl}
YEF x€E *<E YEF

=Infl§ >0: E+8SDF, F+48sDE},

where E and F are subsets of Rn, [ represents the Euclidean
norm, and S = {x € R" : Ixl < 1} is the unit ball.

If E and F are convex, then
8(g,F) = sup{ln(x,E) - hix,F)| : 0Ixh =12} ,

where h(x,E) = sup{(x,y) : v € E} is the support function of E (see
Bonnensen-Fenchel [1]) and (.,.) denotes the scalar product.

If E and F are convex and contain the origin in their interiors,

then

§(E,F) = sup{lg(x, D) - g(x,FHI = Ixh = 1}

vhere EC = {x €R" : (x,y) <1 vy €E} is the dual of E, and

g(x,E%) = Infly > 0 : x € e
is the distance function, or gauge, of Ed; this follows because
h{x,E) = g(x,Ed).

If E and F are convex, full-dimensional, and centrally symmetric

with respect to the origin, then Ed and Fd inherit the same
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properties, and g(x,Ed) and g(x,Fd) define norms on R". Thus S (E,F)
may be viewed as a distance between norms on Rn.

The Hausdorff distance is invariant under congruent, but not affine,

transformations, and reduced by projection. It will be assumed throughout

e

that the space of ellipsoids contains the degenerate ellipsoids. The
space of ellipsoids is not closed under addition.
The following lemma indicates that it will be sufficient to study

ellipsoids centered at the origin.

Lemma 1

] "

Let E and F be two subsets of R, compact, convex and symmetric

with respect to the origin; let El = e + E and Fl = f + F, then

Y s &l Fh < 8(E,F) + le-£ll 5_26(E1,F1)

: §&,F) < sLFH  le-fl < s, Fh
Proof:

1 8 e!,Fl) = sup{|n(x,eY) - h(x,Fl)l : Mxl = 1}

[}

sup{|h(x,E) - h(x,F) + (e~f,x)| : Ixl = 1}

< sup{|h(x,E) - h(x,F) | : Bxl = 1} + Sup{] (e-£,x)] : Ixh = 1}

A

= §(E,F) + Ne-£l .

Conversely

k ‘;
{
|

!

-6t 7h < h(x,E) - h(x,F) + (e-f,x) S_G(El,Fl) vixl =1 ;
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now h(x,E) = h(-x,E) and h(x,F) = h(-x,F) as E and F are symmetric

with respect to the origin, and thus
-5 (L, FY) < h(x,E) - hix,F) - (e-£,%) < 8(e,FD) vixl =1 .
Adding and subtracting, one gets:
-G(El,Fl) < h(x,E) - h(x,F) < s (e, b
-5 (L P < (e-f,%) <sELFH  vixl =1,

and hence §(E,F) gG(El,Fl) and le-f£l < 6(E1,F1). QED.

2. Ellipsoids as vectors and matrices.

Ellipsoids may also be represented by a vector (its center) and

a matrix (its size, shape and position):
E=e+ AS = {x€ER" : x=e +2at, Itl =1} ;
note that h(x,E) = (e,x) + ﬂ‘rxl. If A is nonsingular, then:

E={x €/ : (x-e)T(AAD) F(x-e) < 1} .

To any ellipsoid is associated an equivalence class of matrices;

in fact E=e + AS = e + &S if and only if A =RO where O is an

orthogonal matrix, or equivalently if I-\A-T = ;A-r. Define now H = RAJr,
and A = Hl/ 2, then, in the remainder of this paper an ellipsoid will

be defined by

1/2

E=e+AS=¢e +H s

where A and H are positive semidefinite symmetric matrices. Using

PRt tats His -

. .o




-4 -

any of these two definitions there exists a one-to-one correspondence

between ellipsoids and points (e,A) in R x p(Rn) (respectively

(e,H) € R" x p(Rn)), where p(Rn) is the set of n X n positive semi-
definite symmetric matrices.

One could have tried to associate to an ellipsoid a lower triangular
matrix L(H = LLT); L is unique if H is nonsingular, but not necessarily
so if H is singular. This is the key reason why the results of this
paper will not extend to the case of Cholesky factors.

If A is nonsingular, then

{x €& : (x-e)Ta 2 (x-e) < 1}

o
it

{x€RrR": (x-e)H l(x-e) <1} .

We may now define two matric distances on the space of ellipsoids.

Let E=e +AS =¢ + Hl/z 1/2

S and F=f +BS=f +K S be two
ellipsoids in Rn, where A, B, H and K are positive semidefinite

symmetric matrices, then define:

a(g,F) = le-£l + la-Bl

AE,F) = le-fl + Nu-x0Y? = le-£1 + 1a2-5211/2

’

where I I, for matrices, is the spectral norm.

It is clear that 4 and A satisfy the axioms for a metric (or

distance) .

Various inequalities between 4, A and § will be proved in
the next section; the relationship between 4 and § is the closest r
one, a8 d and § are related by inequalities involving constants

depending only upon the dimension of the space.
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The inequalities imply that the three metrics define the same
topology on the space of ellipsoids, but, more strongly, that rates of
convergence can be related.

The inequalities between 4 and § imply that the rates of con-
vergence of a sequence of ellipsoids may be studied within a space of

sets, or a space of matrices, and that the two rates are identical.

3. Inequalities between distances.

If E and F are ellipsoids centered at the origin, and El =e + E,

Fl = f + F, then

acEl,Fl) = le-£l + a(g,F)
AL, FY = le-fh + A(E,F) ;

and Lemma 1 indicates that it is enough to study ellipsoids centered

at the origin. 1In that case:

a(g,r) = Ia-Bl
A(E,F) = ||H-1<ll/2 = IA2-32I1/2
§(E,F) = Sup{|faxl - Upxl| : Ixl =1} .

Theorem 2

let E=AS and F = BS be two ellipsoids in Rn, centered at
the origin, where A and B are n X n positive semidefinite symmetric

matrices, then:

K 'a-sl < sup(|Iaxl - Isxl| : Ix} = 1} < la-l
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or
§ (E,F) < 4(E,F) < knG(E,F)
where kn = 2V7n(n+2).

Proof:

For the first part, one has
|Iaxt - UBxl| < lax-Bxl = l(a-B)xl < Na-Blixt ,

and sup{llaxl - Iex!| : Uxl = 1} < Ma-Bl.
For the second part, let & = Sup{|faxl - IBxl] : UIxl =1}, and

a <a

& eee < € eoe < - ei
n < j_al,Bn —-Bn—l < —-Bl be the ordered eigenvalues

n-1
of A and B (clearly all real and nonnegative numbers).

The maximum characterization for the eigenvalues of Hermitian
matrices gives:

02 = Max Min xTAzx .

k
sk szk

where Sk represents the intersection of any k dimensional subspace

with the unit spherical surface; assume that S* gives the maximum.

k
Now define xﬁ by
x;TBZX; = Min xTnzx .
xEs*
k
Thus
Bi = Max Min xTBzx > Min xB%x = |Bxi|2
sk xesk xES;

SRS SR —
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Min x Ta2y < laxs)
kx&‘;,k Ay

it follows that

ak-Bkﬁle;:l—le;lgG.

Reversing the argument, Bk - oy < §, and lak-BkI <8 vk=1, ..., n.
The content of the theorem is unchanged if A is replaced by

OTAO and B by OTBO. where O 1is any orthogonal matrix; hence we
may assume that A is diagonal, and that

a, = a,, vi=1, ..., n.

Denote by B, = Be, the xth column of B, where e is the k™

column of the identity matrix; then
loy, - ¥B | = [Une | - KBe H] < & vk=1, ..., n.

Hence

18, - 1B M < [B oy | + [o - IB 0| < 26 Yk=1, ..., n.
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k=1

implying that

o< Il -p, < 2n8 vk =1, ..., n.

This leads to:

Jo b, | < la =B | + |8, =~ IB 0| + [dB 0 - b | < (2n+3)5 .

llel - |Dx|] S_IIBx' - le'l + IﬂAxﬂ - lell
<8 + Ia-pl < 8§ + (2n+3)§ = (2n+4)§ ,

as la-pl = Max o

-b. .| < (2n+3)86.
k=1,...,n k “kk

by a multiple of §. If bii = 0, or bkk = 0, then bik
2

= - - l
that b, >0, b, >0, and let a=b,, b=b,, c bikl and

0 =+1 (resp. -1) if bik is positive (resp. negative).
1

Choose 2z = ———— (be, + gae ):
> > i k
a +b

) _ 1
Bzl = —=—— IbB, + gaB |

I i k

a“+b
1
= ——
(abtac)e; + o(abtbele, + ] (bbyy + oaby el

22402 ALk

n n n
o ik};'l el -p )= ] ddal-g) 5_k£l (I8 ¥ - B | < 2n6 ,

Let D = Diag (bkk), and x be any vector of unit length, then:

It remains to show that the off diagonal elements of B are bounded
=0 (i # k)

as bik < b,;b., Dby the positive semidefiniteness of B. So assume

.
e s e bl e A s 2
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I (ab+ac) e; + O(ab+bc) ekIl

= ——————-((ab+ac)2 + (ab-i-bc)z)l/2

a2 2 41/2
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where this last equation defines 4 (4 > 0).

vY2ab
2
a

Now, as fpzll = , it follows that 4 < IBzl - Ipzl < (2n+4)6.

+b2

The value of d is given by the positive root of

2, 2/2ab_, _ 2, 2abc(ath) .

C H
/ 2 2
a2+b2 a +b

the left-hand side increases with d (d > 0) and is less than the

d

right-hand side for 4 =0 and 4 c/v2, implying that the value of

d 1is greater than c//f, and
c < a2 < 2/2(n+2)6
Thus [b, | < 2/Z(n+2)8, Yi,k, i # k, and

la-sk? < Tr(A-B) 2

< n(2n+3)26% + n(n-1)8(n+2) %52

< en’(n+2) %82 ;

3

i




i e v ¥ e D a, e v L2 T e

hence Ma-Bl < 2/2n(n+2)8. QED
The next result, which compares the distances 6§ and A, uses
1 an operator theory proof, and hence carries to infinite dimensional

Hilbert spaces.

Theorem 3
; Let E = Hl/zs and F = Kl/zs be two ellipsoids in Rn, centered
-
@; at the origin, where H and K are positive semidefinite symmetric

matrices, then

s, < W-xh’? < 162(2,; + 8(e,Fmax(o® 02,

N

where §(E,F) Sup{l(xTHx)l/z - (xTKx)llzl : bxl =1}, AP = IH-Kll/z,

and D(E) = 2|H|1/2 is the diameter of E; it may also be written as:

| ba-xl/f -kl + max(Bud, 0k0)) /2 & (max(dul, Ixly)2/2)

1 < 8(E,F) < a-xh/? .

Proof: i

Let § = §(E,F); thus:

/2 /2

a2 - Tkt st vk,
hence
xTHx < 62002 + 250xd (xTkx) /2 + xTrx vx ,
< §20x0% + xTxx + e 1s2Mx0% &+ € (x Kx) vx, ve > 0 |

= 824N IxI? + (14e) (xTKx) VX, Ye > 0 . ]




1

X (H-K)x < x (82(1+e )T + eX)x  vx, ve > 0,

and similarly, reversing the argument,

xT(H—K)x 2_-xT(62(1+n_1)I + nH) x ¥x, yn > 0 .
These two equations imply that
2 -1 2 -1
Pu-kl < Max{elkl + §°(1+ ) ,nlal + §°(14n )} veE >0, yn >0 ;

1/2 1/2
taking € = &6/0ul and n = 8/0kl , one gets

ba-xl < 62 + 26 max(lult/?,1x11/2

For the second part, let A2 Ia-xl, thus

le(H—K)xl A%xl? vx ;

A

using the inequality

la-b| < Vfa2-b2| (a,b > 0)

one gets
| "0 2 - (T 12| < alxd vx ,

and

i e

§(E,F) = Sup{| (xTHx)l/z - (xTxx)l/zl : Ixl =1} <A = In-x11/2 |

QED

Theorems 2 and 3 can be combined to give a relationship between
the distances d and A, which is a statement about square roots of

matrices.
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| Theorem 4

Iet H and K be two n x n positive semidefinite matrices, and

1/2

A=H s B=K . then

2;1|A-B|| < bu-xi /2 < [2la-Blmax(lal, iBh) + 1a-a1%11/2

e R e A UAns e A e e T

or

Br-kl /1 (Hg-kD + max (hul, 0k0)) Y2 & uaxdal, 1xh)) Y3

"1/2

[ A

fa-sl < ¢ Bu-x

’

where £ =k 2v2n (n+2).

n

St AtCABMM, SN s Sy sl el A

This theorem means that the square root satisfies a Lipschitz condition

on the cone of positive semidefinite matrices:
1
/2«20 < & luxi 2 wax € p" ,

where the Lipschitz constant depends only upon the dimension of Rn:

£n is bounded by a polynomial of degree 1 in the dimension of p(Rn). !

It is now a simple matter to extend Theorems 2, 3 and 4 to the

case of ellipsoids not necessarily centered at the origin.

Theorem 5

172 172

let E=e +AS=e + H S and FP=f +BS =f + K S be two

ellipsoids in Rn, and A, B, H and K be nX n positive semidefinite

symmetric matrices. Denote § = §(E,F), 4 = A{(E,F), A = A(E,F) and

|1/2,|K|1/2 1

M = Max(lal,isl) = Max(ln ) = = Max(D(E),D(F)), then the

L]

following inequalities are satisfied:
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(k +1) " 1a < 6 <a < (k +1)6
n - =" =""n

27 < a
n

2/ v s cacen

(a%+2am) 172

| A

(=]
A
>4
A

<6+ (62428m1/2
2%/ m0)) < 6 < A

2v2n(n+2).

£
:-*l.
=2
P
o]
i
Py
1]

Let ¢ = le-£ll, ana 60, do, and Ao be the distances between
E-e and F - £f.

One has d=d +e¢, A=A +¢ andby Lenma 1, § <8 +¢€, € <8
and 60 < 6. Hence a slight difference appears in the proofs for the
various cases.

For instance, Theorem 4 implies

A < (d2+2dM)1/2 .
o - [o] [o}

1/2 + €£; the maximum of the right-hand

Hence A = A + € < (d2 + 2d M)
o - o o
side (subject to a 20, &2 0 and e +4d = d) is attained for

e =0 and do = d, and thus

< (dz + 2dM) 1/2

>
A

or

> A2/(VA2 + M2 M) .

d »>
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The equivalent result from Theorem 3 implies
2 1/2
A° f_(éo + 26°M) ’
hence

/2,

A=A + ¢ < (62 + 26 M)l € ;
o - o 1)

and the maximum of the right-hand side subject to € < § and 60 < 8

is clearly attained for ¢ = § and Go = §, and thus
A 5_(62 + 26M)l/2 + 6

or

2
6> b .
- 2(M+§)

The other cases follow similarly. QED

4. Conclusion.

Three metrics on the space of ellipsoids have been shown to be
linked by various inequalities, and hence the induced topologies are
identical. Not only is the notion of convergence unique, but rates of
convergence can be related. Similar results clearly hold if the Euclidean
norm is replaced by any of the L_ norms.

I1f kn and ln were defined to be the smallest constants satisfying

Theorems 2 and 4 (with zn :_kn), it would be quite interesting to know

whether, or not, they must depend on n, the dimension.

e
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